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Abstract. We present a novel mean-field-like scheme for1
2-spin fermions on a lattice

in arbitrary dimension, generalizing the fermionic linearization approach. It describes the
interaction of each lattice site with its neighbours by means of auxiliary fermions, living on
the same site, dynamically coupled with the physical ones. This leads to a single-site picture
in an enlarged 16-dimensional space given by the tensor square of the fermionic single-site
Hilbert space. The general approach is applied to the extended Hubbard Hamiltonian and to
the ferromagnetic Heisenberg model. The spectrum and the self-consistency equations can be
determined in a straightforward way thanks to the factorization of the linearized dynamical
algebra inu(n) components withn = 4 at most. The self-consistency is formulated as a
fixed-point problem for a map in the space of coupling constants.

1. Introduction

Model Hamiltonians for systems of strongly correlated electrons over a lattice have, in the
past few years, been the object of intense study. This is mainly due to the role that they are
supposed to play in a microscopic account of high-Tc superconductivity. The predecessor
of these models is the celebrated Hubbard model [2] which put in competition the itinerant
character of the lattice electrons with the on-site correlation due to the Coulomb repulsion
favouring localization. Despite its apparent simplicity the Hubbard model has been exactly
solved only in the one-dimensional case by means of the Bethe ansatz (BA) [3]. For
the two- (or three-) dimensional case one mainly relies on strong numerical computations
both of exact-diagonalization [7] and quantum Monte Carlo [7]. It is also possible to
formulate exact statements based on symmetry considerations. The Hubbard model at
half-filling has aSO(4) symmetry which has been used to show that it admits a class
of excited eigenstates, the so-calledη-paired states, with ‘off-diagonal long-range order’
(ODLRO) which implies superconductivity [5], and to prove the completeness of theBA

eigenstates [6]. The extended Hubbard models contain additional nearest-neighbour terms
describing spin–spin and charge–charge interactions as well as pair hopping processes.
Rigorous results in various regions of the space of the parameters weighting the different
couplings can be obtained [8, 16]; in particular it has been shown that non-vanishing pair-
hopping for sufficiently negative on-site interaction leads to aη-paired ground state in the
sector with zero magnetization [4]. In the one-dimensional casead hoc choices of the
model parameters allow integrable Hamiltonians [9–11] to be obtained. Supersymmetry
plays an important role in the exact solvabilty of these models. Another approach consists
of adopting approximation schemes to handle the electronic interactions, typically by means
of mean-field-like treatments. To this class of theories belongs the fermionic linearization
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scheme (FLS) [12] (and references therein), in which one linearizes the hopping term—
that is less important in a strong on-site coupling regime—with Grassmann-like coefficients
representing averages of fermionic operators over a state (both in the quantum-mechanical
and thermodynamical sense) to be determined by imposing self-consistency. This strategy
can be used to map two-dimensional problems onto effective one-dimensional exactly
solvable ones [14, 15]. In [14], linearizing the hopping between adjacent chains of the
two-dimensional Hubbard model, the study of the Mott–Hubbard transition is performed by
exploiting theBA solution of a (renormalized) one-dimensional Hubbard model. This idea
has been generalized in [15] where all the inter-chain interactions of the two-dimensional
extended Hubbard model are linearized and the resulting one-dimensional Hamiltonian is
shown to be unitarily equivalent to theu(2|2)-supersymmetric model of Essleret al [11].
TheFLS in its Clifford variables form preserves the algebraic structure of the exact problem in
that expectation values of the electron operators are assumed proportional to the generators
of a fermionic (super) algebrau(1|1). In the case of the Falicov–Kimball model [13]
the proportionality coefficient turns out to be an order parameter for the metal–insulator
transition. AtT = 0 one finds the Gutwiller results for the Hubbard model. In this paper we
propose an extension of this approach to the general fermion lattice Hamiltonian (in arbitrary
dimension) with two-centre interactions. Such a Hamiltonian can be expressed as a quadratic
form in the generators of the local super-algebras. Adopting a single-site point of view, such
a quadratic form is linearized by mapping all the algebras coupled to that associated with
a given lattice sitej onto a singleu(2|2) algebra. The latter describes in some averaged
way the lattice background ofj . It is built by means of auxiliary fermionic operators
anti-commuting with the physical ones, the coupling constants of the original model being
rescaled by a factor that has to be determined imposing self-consistency conditions. The
local Hilbert space becomes a tensor product of two four-dimensional factors. The linearized
Hamiltonian leaves the eigenspaces of the total (physical plus auxiliary) fermion number
invariant andmodulodiagonal terms treat symmetrically auxiliary and physical fermions.
The extended Hubbard model and the ferromagnetic Heisenberg model are considered in
order to show how the scheme works. The spectrum and self-consistent equations are
explicitly derived in a straightforward way thanks to the simple structure of the linearized
dynamical algebras that turns out to beA` = 4u(1) ⊕ 6u(2) ⊕ u(4). The case of the
Hubbard model with correlated hopping conserving the number of doubly occupied sites is
also discussed. The self-consistency equations assume the form of a fixed-point problem
for a nonlinear map in the manifold of the rescaling factors; nonlinearity makes a careful
classification and the physical interpretation of the results non-trivial. This work is devoted
to the illustration of the conceptual features of the linearization scheme and therefore a
systematic numerical analysis will be reserved for a future publication; only simple analytical
results for the Heisenberg model are discussed.

2. The method

Let 3 be ad-dimensional lattice ofL sites. Without loss of generality3 will be assumed
hyper-cubic. N (i) denotes the set of thez = 2d nearest neighbours ofi ∈ 3. A spin-1

2
fermionic field {aiσ }i∈3,σ=↑,↓ is defined over3. The global Hilbert space is built as the
L-fold graded tensor productH3 = H ⊗ · · · ⊗ H, whereH is the Fock space generated by
the vectors

|0〉, |↑〉 ≡ a
†
↑|0〉 |↓〉 ≡ a

†
↓|0〉 |`〉 ≡ a

†
↓a

†
↑|0〉. (2.1)



Auxiliary fermion linearization 543

H has a naturalZ2-gradation,H = H(0) ⊕ H(1), H(α) denoting the even (α = 0) and the
odd (α = 1) sector spanned by vectors corresponding to even and odd eigenvalues of the
fermion number operators respectively. The algebraA of the linear maps ofH onto itself
inherits this graded structure; it is therefore a super-algebra isomorphic tou(2|2). The
superalgebra structure is defined by the graded commutators [Gα,Gβ} = Kαβ

γ G
γ , where

the symbol [•, •} denotes anticommutators if both theG’s are odd, commutators otherwise
and {Kαβ

γ } are the structure constants. We will denote theZ2-degree of a homogeneous
elementGα by |α| ∈ {0, 1}. For eachj ∈ 3 one introduces local operators acting in a
non-trivial way only on thej th factor inH3, even (odd) operators sitting on different sites
commute (anti-commute). A convenient basis for the corresponding local super-algebraAj

is given by

Sj = a
†
j↓aj↑ S

†
j = a

†
j↑aj↓ Szj = 1

2(nj↑ − nj↓) (2.2)

ηj = aj↑aj↓ η
†
j = a

†
j↓a

†
j↑ ηzj = 1

2(1 − nj↑ − nj↓) (2.3)

Xj = (nj↑ − 1
2)(nj↓ − 1

2) I ∈ centre (2.4)

for the even (bosonic) sectorA(0)
j ,

Qj↑ = (1 − nj↓)aj↑ Qj↓ = (1 − nj↑)aj↓ (2.5)

Q̃j↑ = nj↓aj↑ Q̃j↓ = nj↑aj↓ (2.6)

for the odd (fermionic) sectorA(1)
j . Here niσ ≡ a

†
jσ ajσ , (j ∈ 3, σ =↑,↓) is the local

fermion number operator. These operators (with their Hermitian conjugates) are often
referred to as the Hubbard operators. The Cartan sub-algebraCj of Aj is spanned by the
number operators

Niσ ≡ (1 − nj−σ )niσ , (σ =↑,↓) Ni` ≡ ni↑ni↓.

We now consider a lattice Hamiltonian over3 given byH = H0 +H1, whereH0 andH1

are the inter-site and on-site interaction respectively. The local partH1 has the form

H1 =
∑
i∈3

Hi Hi ∈ Ci

hence it is diagonal in the (direct space) Fock representation. When interested in a strong
coupling limit where the local Coulomb repulsion plays a major role, one may consider
approximate treatments only of the non-local partH0 of the lattice Hamiltonian. Assuming,
for simplicity, nearest-neighbour interactions, the general expression for such an operator is
given by the quadratic form in the Hubbard operators{Gα}16

α=1

H0 =
∑
〈ij〉

∑
αβ

CαβGα
i G

β

j (2.7)

where〈ij〉 denotes nearest-neighbour pairs in3. Isotropy and translational invariance are
assumed as well.H0 can be rewritten in the formally single-site formH0 = 1

2z
∑
j,α 2

α
j G

α
j ,

where

2α
j = 1

z

∑
i∈N (j),β

CβαG
β

i . (2.8)

These non-local operators describe the degrees of freedom of the lattice coupled, in the
interaction channel associated with the generatorGα, with those living at the sitej . Notice
that, since for a number-conserving HamiltonianH0 one hasCαβ = 0 unless|α| = |β|,
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the2α
j ’s carry aZ2-degree also. IfNjk ≡ N (j)

⋂ N (k) = ∅ then [2α
j ,2

β

k } = 0 and if
k 6∈ N (j) then [2α

j ,G
δ
k} = 0, otherwise

[2α
j ,2

β

k } = 1

z2

∑
i∈Njk

Cαγ CβδKγδ
τ G

τ
i [2α

j ,G
δ
k} = 1

z
CαγKγδ

τ G
τ
k . (2.9)

These commutation rules describe how the lattice background dynamics couples with the
local degrees of freedom inj ∈ 3. In order to get a single-site picture one usually assumes
that operators2α

j can be replaced by their averages〈2α
j 〉 over a suitable equilibrium state to

be determined self-consistently. In this way one neglects both correlations and fluctuations
and violates statistics, having now ac-number field that obviously has trivial commutation
rules. The auxiliary fermion linearization scheme consists in the transformation

2α
j → (2α

j )
φ ≡

∑
β

Cαβpβ(G
β

j )
φ (2.10)

where{(Gβ

j )
φ} are a set of operators spanning an algebraAφ ∼= u(2|2), satisfying the further

condition [(Gα
i )
φ,G

β

j } = 0, and the{pα}’s are variational parameters. The{Gβ

j }’s act on
an auxiliary Hilbert spaceHφ (φ-sector) attached to the sitej and may be thought of as
realized in terms of auxiliary fermionic operators{aφ}jσ in the same way as the Hubbard
operatorsGi are realized in terms of the physical ones. The transformation (2.10) assumes
translational invariance in that all the algebras{Aj }, j ∈ N (i) are replaced by the algebra
Aφ

i and moreover the parameters{pα} do not depend upon the site labelj . This procedure
is a sort of dimerization of the dynamics over3 in which the two sites of each dimer play an
asymmetric role: in one site there are physical fermions{ajσ }σ=↑,↓ whose local interactions
(contained inH1) are treated exactly, in the other site there are auxiliary fermions{aφjσ }σ=↑,↓
representing the remainder of the lattice in an averaged way. The parameters{pα} are to be
determined by self-consistency conditions that will be discussed in section 3. The linearized
Hamiltonian is then

H`
0 =

∑
j

H`
j H`

j = z

2

∑
α,β

Cαβpβ(G
β

j )
φGα

j (2.11)

from which it follows that the{pα}’s play the role of coupling constants between the physical
and auxiliary fermions. Since fori 6= j one has [H`

i ,H
`
j ] = 0 the approximation scheme

has indeed led to a single-site picture, suited to describing phases with unbroken translational
symmetry. The local Hilbert space is extended toH̃ = H⊗Hφ . This implies that the global
dynamical algebra of the linearized system isA`

3 = ⊕j∈3A`
j , the local dynamical algebras

A`
j being given by sub-algebras ofu(2|2)j ⊗ u(2|2)j . The linearized HamiltonianH`

0 is
invariant under the exchange of physical fermions with the auxiliary ones and conserves
the total number of fermionsnF ≡ nPhys + nφ if H0 does so. The local (non-linearized)
interaction breaks the first symmetry only. Therefore we have the decomposition

H̃ =
4⊕

nF=0

H̃(nF)

of the local enlarged Hilbert space as a direct sum of invariant sub-spaces with a fixed

numbernF of fermions. This implies thatA`
j = ⊕4

n=0u(dn), wheredn ≡ dim(H̃(n)) =
(

4
n

)
.

From the physical point of view this factorization corresponds to the different elementary
processes that can occur between a site and its first neighbours: fermions hop from a
singly (doubly) occupied site to an empty (singly occupied) one inH(1) (H(3)), spin-flip
(pair hopping), spin–spin (charge–charge) interactions inH(2). The hopping from a doubly
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occupied site to a single occupied one is inH(2) also. The casenF = 0 (nF = 4) corresponds
to an empty (fully occupied) lattice and has a trivial dynamics. The linearization scheme
outlined above becomes simpler for the case of models in which a kinematical constraint
is imposed on the local Hilbert spaceH → H′ ⊂ H, as for thet–J model (no doubly
occupied sites) and the Heisenberg model (only spin degrees of freedom). The pertinent
local algebra becomesA′ ≡ End(H′) ⊂ A and the whole procedure can be performed
as in the general case by simply replacingH (A) with H′(A′). The approach described
is supposed to improve thec-number-based single-site approach in that, on the one hand,
it allows fluctuations of the background (accommodated inH̃), on the other hand, by
conserving some of the commutation rules, it takes into account the graded (i.e. statistical)
nature of the involved objects. In this respect it is worth pointing out that the neglected
commutators, compared with the ones assumed to be non-vanishing, are scaled by a factor
z−1 = (2d)−1. This suggests that the approximation should improve in high dimensions
(indeed be exact ford → ∞).

3. Extended Hubbard model

The extended Hubbard model in the presence of an external magnetic fieldh is described
by the grand-canonical Hamiltonian

H = −t
∑
〈ij〉

∑
σ

(a
†
iσ ajσ + a

†
jσ aiσ )+ U

∑
i

ni,↑ni↓

+V
∑
〈ij〉

∑
σσ ′

a
†
iσ ajσ ′ +X

∑
〈ij〉

∑
σ

(a
†
iσ ajσ + a

†
jσ aiσ )(ni−σ + nj−σ )

+J
∑
〈ij〉

∑
σσ ′

a
†
iσ a

†
jσ ′aiσ ′ajσ + J ′ ∑

〈ij〉
(a

†
i↑a

†
i↓aj↓aj↑ + a

†
j↑a

†
j↓ai↓ai↑)

+h
∑
i

1
2(ni↑ − ni↓)− µ

∑
iσ

niσ . (3.1)

In terms of the generators ofAi the Hamiltonian (3.1) can be rewritten asH = −∑
〈ik〉Hik+∑

i Hi where the non-local contribution is given by

Hik =
∑
σ=↑,↓

t (Q
†
jσQkσ +Q

†
kσQjσ )+ (t − 2X)(Q̃†

jσ Q̃kσ + Q̃
†
kσ Q̃jσ )

+(t −X)(Q̃
†
jσQkσ +Q

†
kσ Q̃jσ )+ (t −X)(Q

†
jσ Q̃kσ + Q̃

†
kσQjσ )

+J (2Szj Szk + S
†
j Sk + S

†
kSj )+ 2(J − 2V )ηzj η

z
k − J ′(η†

j ηk + η
†
kηj ) (3.2)

and the local terms by

Hi = −µ̃(2Ni` +Ni↑ +Ni↓)+ h

2
(Ni↑ −Ni↓)+ UNi` + C. (3.3)

Here we have introduced the modified chemical potentialµ̃ = µ − 1
2z(2V − J ), and

C = 1
4zL(2V − J ) gives a shifting of the spectrum, since its contribution is immaterial,

it will be neglected from now on. Performing the linearization of the two-site termHik
according to the general scheme of section 1, we get a single extended-site term which can
be expressed, up to an overall1

2z factor, as

H` =
∑
σ=↑,↓

(−tqσQ†
σQ

φ
σ + (2X − t)q̃σ Q̃

†
σ Q̃

φ
σ + δ(qσ Q̃

†
σQ

φ
σ + q̃σQ

†
σ Q̃

φ
σ ))

+(2V − J )ezηzηzφ + J ′e−η†ηφ − J (szSzSzφ + s−S†Sφ)+ HC (3.4)
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wheresz, ez ∈ R, qσ , q̃σ , s−, e− ∈ C are the variational parameters{pα}, andδ ≡ X− t . In
order to simplify the notation we perform a rescaling of some of the{pα}

q̃σ 7→ (2X − t)q̃σ (σ =↑,↓)
ez 7→ ez(2V − J ) e± 7→ J ′e± (e− ≡ (e+)∗)
sα 7→ sαJ (α = ±, z). (3.5)

This allows us to give explicit expressions for the projections of the linearized Hamiltonian
into the subspaces̃H(i) ⊂ H̃, (i = 0, . . . ,4) in terms of the basis vectors listed in appendix
A.

H(0) = ez

2
|1〉0〈1|0

H
(1)
` = diag

(
0, 0,−µ− h

2
,−µ+ h

2

)
− t

(
q↑|4〉1〈1|1 + q↓|3〉1〈2|1 + HC

)
H
(2)
` = − 1

4 diag(ez,−sz + h+ 2µ, sz − h+ 2µ, sz + h+ 2µ,−h− sz + 2µ,

−2U + ez + 4µ)− s+|5〉2〈2|2 + e+|6〉2〈1|2
−δ(q↑|6〉2〈2|2 − q↓|6〉2〈5|2)+ δ(q̃↑|5〉2〈1|2 − q̃↓|2〉2〈1|2)+ HC

H
(3)
` = 1

2
diag

(
−µ− h

2
, U − 2µ,−µ+ h

2
, U − 2µ

)
− (q̃↑|2〉3〈1|3 + q̃↓|4〉3〈3|3)+ HC

H
(4)
` =

(
−2µ+ ez

2
+ U

)
|1〉4〈1|4. (3.6)

In the following we shall discuss the diagonalization of each of the non-trivialH
(i)
` , (i =

1, 2, 3). For simplicity, since no ambiguity may arise, we shall drop the indexj from the
vectors|i〉j .

3.1. Spectrum ofH(1)
`

The Hamiltonian for the one-particle sectorH(1) has a twofold block-diagonal form,
corresponding to the decoupling of the spin sectors. In terms of dynamical algebras this
means thatA(1) = u(2) ⊕ u(2) where the twou(2)’s are generated respectively by the
operators (u(2) ∼= su(2)⊕ u(1)):

Kz
↑ ≡ 1

2(|4〉〈4| − |1〉〈1|) K+
↑ ≡ eiα↑ |4〉〈1| K−

↑ ≡ (K+
↑ )

† ∈ su(2)
K0

↑ = 1
2(|1〉〈1| + |4〉〈4|) ∈ u(1)

Kz
↓ ≡ 1

2(|3〉〈3| − |2〉〈2|) K+
↓ ≡ eiα↓ |3〉〈2| K̃−

↓ ≡ (K+
↓ )

† ∈ su(2)
K0

↑ = 1
2(|2〉〈2| + |3〉〈3|) ∈ u(1) (3.7)

denotingασ the phase ofqσ . The central elementK0
σ andKz

σ generate the Cartan subalgebras
Cσ ⊂ u(2). By using these operators the Hamiltonian becomes

H(1) =
∑
σ

(
σ
h

2
− µ

)
(K0

σ −Kz
σ )− t |qσ |(K+

σ +K−
σ ). (3.8)

Diagonalization can be performed by the exponential of the adjoint action of the operator
Z = i(θ (1)↑ K

y

↑ + θ
(1)
↓ K

y

↓), whereKy
σ = (2i)−1(K+

σ −K−
σ ), with

θ(1)σ = tan−1

(
2t |qσ |

σh/2 − µ

)
(σ =↑,↓). (3.9)
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This means that ifU ≡ exp(Z) ∈ U(2) ⊗ U(2) then U−1H`U ∈ ⊕σCσ . Since in the
representation (3.7) one has(Ky)2 = 1

2K0 ≡ 1
2I, the rotationU can be straightforwardly

calculated and its columns give the eigenvectors. The eigenvalues and the eigenvectors
have the well known formE(1)±σ = E

(1)
0σ ± E

(1)
1σ

E
(1)
0σ = σh/2 − µ

2
E
(1)
1σ = 1

2

√(
σh

2
− µ

)2

+ 4t2|qσ |2 (3.10)

|ψ(1)
−σ 〉 = cos

θ
(1)
↑
2

|H 〉(1)σ + e−iα↑ sin
θ
(1)
↑
2

|L〉(1)σ

|ψ(1)
+σ 〉 = sin

θ
(1)
↑
2

|H 〉(1)σ − e−iα cos
θ
(1)
↑
2

|L〉(1)σ (3.11)

where the highest (lowest)su(2) vectors|H 〉(1)σ , (|L〉(1)σ ) are respectively given by|4〉, (|1〉)
in the up-sector and|3〉, (|2〉) in the down-sector.

3.2. Spectrum ofH(2)
`

In this sector, corresponding tonF = 2, the dynamical structure is more complex than in
the former case due to the presence of the terms weighted byδ = X − t . We split the
Hamiltonian inH(2)

` = H
(2)
0 + δH

(2)
1 where

H
(2)
1 = −q↑|6〉〈2| + q↓|6〉〈5| + q̃↑|5〉〈1| − q̃↓|2〉〈1| + HC (3.12)

andH(2)
0 is the remainder. The dynamical algebra is given byA(2) ∼= u(4)⊕ u(2), if δ = 0

we have the reductionA(2) → u(2)⊕u(2)⊕u(2), the three commutingu(2) blocks, one of
which is in diagonal form, will be labelled respectively byη, S,D. It is worth emphasizing
that this drastic simplification that we find at the linearized level is reminiscent of the one
occurring for the exact problem, where—providing an additional conserved quantity (i.e.
the number of doubly occupied sites)—it is essential for the exact solvabilty of the one-
dimensional Hubbard-like models. Of course in the present case the model remains also
exactly solvable forδ 6= 0, but the expressions for the eigenvalues and eigenvectors become
much more complex, and therefore will not be reported in the following. The generators
are

Kz
η ≡ 1

2(|6〉〈6| − |1〉〈1|) K+
η ≡ eiα|6〉〈1| K−

η ≡ (K+
η )

†

Kz
D ≡ 1

2(|3〉〈3| − |4〉〈4|) K+
D ≡ |3〉〈4| K̃−

D ≡ (K+
D)

†

Kz
S ≡ 1

2(|5〉〈5| − |2〉〈2|) K+
S ≡ eiβ |5〉〈2| K̃−

S ≡ (K+
S )

† (3.13)

in which α (β) denotes the phase ofe− (s−), for the su(2) components and byK0
α

(α = η, S,D), built in the obvious way, for theu(1) ones. H(2)
0 can be rotated onto

the Cartan subalgebra operating with the adjoint action ofU = UηUS ∈ U(2)⊗U(2) where

Uη,S = exp(θη,SK
y

η,S) K
y

η,S = 1

2i
(K+

η,S −K−
η,S)

θη = tan−1

(
2|e+|
U − 2µ

)
θS = tan−1

(
2|s+|
h

)
. (3.14)

The spectrum has the formEη,S± = E
η,S

0 ± E
η,S

1 in which

E
η

0 = 1
2(U − ez − 2µ) E

η

1 = 1
2

√
(U − 2µ)2 + 4|e+|2

ES0 = 1
2(s

z/2 − µ) ES1 = 1
2

√
h2 + 4|s+|2 (3.15)
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and the eigenvectors

|ψη
+〉 = cos

θη

2
|6〉 + e−iα sin

θη

2
|1〉 |ψη

−〉 = sin
θη

2
|6〉 − e−iα cos

θη

2
|1〉. (3.16)

|ψS
±〉 are obtained by making the substitutions|1〉 7→ |2〉, |6〉 7→ |5〉, θη 7→ θS. Besides

these contributions we have

ED± = −sz
2

− µ± h

2
|ψD

1,2〉 = |3, 4〉. (3.17)

The HamiltonianH(2)
1 couples theη and S sectors. Imposingδ = 0 (i.e. t = X) the

Hamiltonian has been diagonalized; ifδ can be assumed to be a small parameter, one can
resort to a perturbative expansion. Note that the first-order contribution is zero.

3.3. Spectrum ofH(3)
`

In the three-particle case once more the dynamical algebra has the structureA(3) =
u(2)⊕ u(2). The generators are given by

Kz
↑ ≡ 1

2(|2〉〈2| − |1〉〈1|) K+
↑ ≡ eiα↑ |2〉〈1| K−

↑ ≡ (K+
↑ )

†

Kz
↓ ≡ 1

2(|3〉〈3| − |4〉〈4|) K+
↓ ≡ eiα↓ |3〉〈4| K̃−

↓ ≡ (K+
↓ )

† (3.18)

plus the central elementsK0
σ , (σ =↑,↓) built as in the previous sections. Hereασ denotes

the phase of̃qσ . ExpressingH(3)
` in terms of these operators the spectrum can be obtained

in the same way as in the previous case, the rotation angles now are

θ(3)σ = tan−1

(
2|q̃σ |

µ− U − σh/2

)
(σ =↑,↓) (3.19)

and the eigenvaluesE(3)σ± = E
(3)
0σ ± E

(3)
1σ , where

E
(3)
0σ = U − 3µ+ σh/2

2
E
(3)
1σ = 1

2

√(
U − µ+ σh

2

)2

+ 4|q̃σ |2 (3.20)

with eigenvectors

|ψ(3)
−σ 〉 = cos

θ(3)σ

2
|H 〉(3)σ + e−iα↑ sin

θ(3)σ

2
|L〉(3)σ

|ψ(3)
+σ 〉 = −e−iα↑ sin

θ(3)σ

2
|H 〉(3)σ + e−iα↑ cos

θ
(3)
↑
2

|L〉(3)σ . (3.21)

Now the highest (lowest)u(2) vectors are given by|2〉 (|1〉) in the up-sector and|4〉 (|3〉)
in the down-sector.

4. Self-consistency

The self-consistency of the linearization procedure is implemented by means of the
constraints

pi = 〈G†
iG

φ

i 〉
〈Gφ†

i G
φ

i 〉
≡ 4i({pj }) (i, j = 1, . . . ,8) (4.1)

whereGi denotes a generator ofu(2|2) andpi the corresponding variational parameter

(Gi)
8
i=1 = (Sz, S, ηz, η,Q↑,Q↓, Q̃↑, Q̃↓)

(pi)
8
i=1 = (sz, s+, ez, e+, q↑, q↓, q̃↑, q̃↓) ∈ R2 × C6. (4.2)
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The ensemble averages〈•〉 are obtained by tracing over the physical as well as the auxiliary
degrees of freedom. Explicit computations show that, forδ = 0, in equation (4.1) the phases
cancel out so that the effective parameters spaceM turns out to beR2 × (R+

0 )
6. These

equations shed light onto the physical meaning of thepi ’s: they measure the correlation
between the physical and the auxiliary fermions in each of the interaction channels associated
with the generators ofu(2|2), in other words they determine the relative weight of the
different couplings between the local degrees of freedom and those of the remainder of the
lattice. The right-hand side of (4.1) defines a nonlinear map4 of M onto itself, parametrized
by the interaction strengths of the extended Hubbard Hamiltonian (3.1) and depending upon
temperature. The self-consistency requirement can be viewed as a fixed-point problem for
4 constrained by the filling conditionn ≡ 〈N〉 which allows the determination of the
chemical potentialµ. Of course if we set the external magnetic field to zero, restoring the
spin symmetry,M becomes smaller due to merging of the variational parameters associated
to different spin sectors. Since this problem, although finite-dimensional, has quite a rich
structure and has to be dealt with numerically, it is worthwhile to begin analysing some
relevant subcases from the physical point of view. As mentioned in the previous section
assumingt = X the explicit expression for4 (that is reported in appendix A) turns out to
be particularly simple. The corresponding grand-canonical partition function is

Z =
4∑
i=0

ζ (i) whereζ (i) = TrH(i) exp(−βH(i)
` ) (i = 0, . . . ,4)

ζ (i) = e−βE(i) (i = 0, 4)

ζ (i) = 2
∑
σ=↑,↓

e−βE(i)0σ cosh(βE(i)1σ ) (i = 1, 3)

ζ (2) = 2
∑

α=η,S,D
e−βE(α)0 cosh(βE(α)1 ). (4.3)

The explicit form of the eigenvalues{E} was given in the previous section. Equations
(4.3) describe the subcaseδ = 0; this is the case of the supersymmetricEKS model, and,
more generally, that of those Hubbard-like models in which the number of doubly occupied
sites is conserved. Another interesting choice—mainly in view of comparison with exact
results—is given by the Heisenberg model. Although it could be derived directly from the
extended Hubbard model by imposing the obvious kinematical constraints, the Heisenberg
model will be treated on its own, in order to show that the method does not require the local
algebras{A}j∈3 to be explicitly realized in terms of bilinears of abackgroundfermionic
algebra. Even in this case diagonalization can be carried over in a simple algebraic-theoretic
way, thanks to the breaking of the dynamical algebra in a direct sum ofu(2) terms, plus
two trivial u(1) contributions.

5. Ferromagnetic Heisenberg model

Let us consider the ferromagnetic Heisenberg model on ad-dimensional hyper-cubic lattice
3 with an external magnetic fieldh:

H = −J
2

∑
〈ij〉
(Szi S

z
j + S+

i S
−
j + HC)+ h

∑
i

Szi (J > 0). (5.1)

After the auxiliary-fermion linearization the local contribution is given by

H` = −zJ
4
(szSzφSz + s+S+φS− + HC)+ hSz (5.2)
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in which sz ∈ R, s+ = |s+|eiα ∈ C are the variational parameters, andz = 2d is the
lattice coordination number. The Hilbert space consists of the tensor product of two spin-1

2

representation spaces ofsu(2), namelyH̃ ≡ H ⊗ H, whereH = span{| ↑〉, | ↓〉} (the first
factor is assumed to be the auxiliary-fermion sector on which the operators labelled withφ

act in a non-trivial way). The basis vectors ofH̃ are enumerated as follows:

|1〉 ≡ |↑〉 ⊗ |↑〉 |2〉 ≡ |↑〉 ⊗ |↓〉
|3〉 ≡ |↓〉 ⊗ |↑〉 |4〉 ≡ |↓〉 ⊗ |↓〉. (5.3)

In terms of these states the Hamiltonian (absorbing, for the time being, the overall factor
1
4zJ in the sα ’s) (5.2) can be written as

H` = 1
2 diag(−sz + 2h, sz − 2h, sz + 2h,−sz − 2h)− s+|2〉〈3| − s−|3〉〈2|. (5.4)

From this expression it is clear that the dynamical algebra of the linearized model is given
by the direct sum over the lattice sites of local algebrasA = u(1) ⊕ u(2) ⊕ u(1), the
two u(1)’s being, respectively, generated by the projectors over the fully polarized states
|1〉〈1|, |4〉〈4|, whereasu(2) is spanned by the operators

K0 = 1
2(|2〉〈2| + |3〉〈3|) K+ ≡ eiα|2〉〈3|

K− ≡ (K+)† Kz ≡ 1
2(|2〉〈2| − |3〉〈3|). (5.5)

Since theu(1) components are trivial, one has to diagonalize only theu(2) contribution

Hu(2) = szK0 − hKz − |s+|(K+ +K−). (5.6)

This can be achieved, as in the previous section, with the rotationU ≡ exp(iθKy) ∈ U(2),
with angular parameterθ(|s+|, h) = tan−1(2|s+|/h). The spectrum and the eigenvectors are
given by

ED± = − s
z

2
± h

2
ES± = sz

2
±

√
|s+|2 + h2

4
(5.7)

|ψD
+ 〉 = |1〉 |ψD

− 〉 = |4〉
|ψS

+〉 = −eiα sin
θ

2
|2〉 + cos

θ

2
|3〉 |ψS

−〉 = cos
θ

2
|2〉 + e−iα sin

θ

2
|3〉. (5.8)

The self-consistency is implemented by means of the two constraints

〈S†Sφ〉 = s+〈Sφ†Sφ〉 〈SzSzφ〉 = sz〈SzφSzφ〉 (5.9)

where

〈•〉 ≡
4∑
i=1

〈ψi | • |ψi〉
〈ψi |ψi〉 eβE

i

.

Explicit calculations show that equation (5.9) can be cast in the fixed-point form

|s+| = N+
h (s

+, sz)
D+
h (s

+, sz)
sz = Nz

h(s
+, sz)

Dz
h(s

+, sz)
(5.10)

where

N+
h (s

+, sz) ≡ sinθ sinh

(
β

(
h2

4
+ |s+|2

)1/2)
Nz
h(s

+, sz) ≡ eβs
z

cosh

(
β
h

2

)
− cosh

(
β

(
h2

4
+ |s+|2

)1/2)
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D+
h (s

+, sz) ≡ exp

(
−β h

2

)
exp(βsz)+ sin2 θ

2
exp

[
β

(
h2

4
+ |s+|2

)1/2
]

+ cos2
θ

2
exp

[
−β

(
h2

4
+ |s+|2

)1/2
]

Dz
h(s

+, sz) ≡ cosh

(
β
h

2

)
eβs

z + cosh

(
β

(
h2

4
+ |s+|2

)1/2)
(5.11)

with θ = θ(|s+|, h) given by (V). In the case of a vanishing external field (i.e.θ(|s+|, 0) =
π/2) these equations reduce to

N+
0 (s

+, sz) ≡ sinh(β|s+|) Nz
0(s

+, sz) = eβs
z − cosh(β|s+|)

D+
0 (s

+, sz) = Dz
0(s

+, sz) = eβs
z + cosh(β|s+|). (5.12)

We discuss this case in some detail. It is clear that the self-consistency equations admit
(at least) three kinds of non-trivial solutions: (i) isotropicsz = |s+|, (ii) Ising-like
sz 6= 0, s+ ≡ 0, (iii) sz = −|s+|, respectively labelled byi = 1, 2, 3. The system (5.10) can
be reduced to a one-dimensional problemx = Fi(x, β), (i = 1, 2, 3), wherex denotessz

(|s+|). The functionx = fi(β), solution of the latter problem, has an order-parameter-like
behaviour: it is identically zero up to a criticalβic, above which it has non-vanishing values
that saturate forβ → ∞. The critical inverse temperature can be analytically determined
by imposingfi to be singular atβ = βc; from the implict function theorem it follows
that a sufficient condition is given by∂Fi(0, βic)/∂x = 0. Explicit computations show that
βic = 2/J ′, for all i, J ′ ≡ zJ/4. Thef i ’s have quite different critical behaviour. Let us
first discuss the solutions (i) and (ii). The functionsFi are given fori = 1, 2 by

F1(x, β) = sinh(J ′βx)
eJ ′βx + cosh(J ′βx)

F2(x, β) = eJ
′βx − 1

eJ ′βx + 1
. (5.13)

Notice that the second one corresponds to a mean-field Ising system. Forβ → β+
c we have

x1(β) = C1(β − βc) x2(β) = C2(β − βc)
1/2. (5.14)

In both cases the ground state|9i
0〉(i = 1, 2) is degenerate: for the isotropic solution,i = 1

we have the triplet|91
0〉 = {|1〉, |2〉, |4〉}, whereas for the Ising-like case (i = 2) one finds

|92
0〉 = {|1〉, |4〉}. The corresponding eigenvalues are given byE1

0 = −J ′/6, E2
0 = −J ′/2,

showing that phase 2 is energetically favourite. In the isotropic solution the self-consistent
Hamiltonian commutes with the total spin operatorS = Sphys + Sφ , and describes a
paramagnetic phase in which the total spin does not point in any preferred direction. This
can also be seen from the zero-temperature limitx1(β) ∼β→∞ 1

3(1 − 4/3e−2/3J ′β). In
the Ising-like case (i = 2) the SU(2) symmetry is spontaneously broken, sinces+ ≡ 0
we have no contributions from the transverse spin degrees of freedom and we are left
with an effective Ising coupling between thez-component of the spins. The asymptotic
behaviour is now given byx2(β) ∼β→∞ 1 − 2e−J ′β . It is worth pointing out that we
always have〈Sz〉 = 0, (σ =↑,↓) meaning that our linearization scheme does not describe
the ordered phases in terms of these expectation values, but by means of the correlations
between the local spins (f -sector) and the background (φ-sector). The solutioni = 3
has a discontinuity atβ3c < β1,2c that leads to unphysical jumps in the thermodynamical
potentials. However it should be noted that, sincesz < 0, this case corresponds to an
effective anti-ferromagnetic coupling between the physical fermions and the auxiliary ones.
In this situation the single-site approach is not expected to work in that it is strongly based
on the hypothesis of unbroken translational invariance, and therefore the solution space has
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to be limited a priori to the casesz > 0, corresponding toi = 1, 2. From the relation
E(β) ≡ 〈H`(β)〉 = −J ′/2[(sz)2 + 2(s+)2] follows xi(β) ∼

√
−〈H`〉; this shows that the

parameters{sα}, (α = +, z) can, in a sense, be considered as the order parameter being
related to the expectation value of the exchange energy.

6. Hubbard model with correlated hopping

Let us consider the Hamiltonian for the Hubbard model with correlated hopping

H = −t
∑

〈ij〉,σ=↑,↓
(c

†
iσ cjσ + c

†
jσ ciσ )+X

∑
〈ij〉,σ=↑,↓

(ni−σ + nj−σ )(c
†
iσ cjσ + c

†
jσ ciσ )

+U
∑
i

ni↑ni↓. (6.1)

Upon imposingt = X and introducing the projected fermionsQiσ ≡ (1− ni−σ )ciσ , Q̃iσ ≡
ni−σ ciσ , the kinetic term becomes

Hhop = −t
∑

〈ij〉,σ=↑,↓
(Q

†
iσQjσ − Q̃

†
iσ Q̃jσ + HC) (6.2)

whereas after the linearization the local Hamiltonian reads

H` = − tz
2

∑
σ

(qQ†
σQ

φ
σ − q̃Q̃†

σ Q̃
φ
σ + HC)+ UN`. (6.3)

Hereq = |q|eiαq̃ = |q̃|eiβ ∈ C andN` ≡ n↑n↓. For this model the relevant Hilbert space is
given by the full 16-dimensional tensor productH ≡ H ⊗ Hφ . The linearized Hamiltonian
has non-vanishing projections over the sub-spacesH̃(i) ⊂ H̃, i = 1, 2, 3, 4. The action of
H` is reducible thanks to the decoupling of the spin sectors; furthermoreH

(2)
` = UN

(2)
` is

diagonal spanning au(1) dynamical sub-algebra. The whole dynamical algebra turns out
to be

A = u(2)⊕ u(2)⊕ u(1)⊕ u(2)⊕ u(2) ∼= 4su(2)⊕ 5u(1) (6.4)

where two su(2)’s are generated by the operators{Q†
σQ

φ
σ }σ=↑,↓, the other two by

{Q̃†
σ Q̃

φ
σ }σ=↑,↓. Now we give the projected Hamiltonian written in terms of the Fock basis

of the H̃(i) spaces of appendix A.

H
(0)
l = 0 H(4) = U |1〉〈1|

H
(1)
l = − tqz

2
(|4〉〈1| + |3〉〈2| + HC) H

(2)
l = U |6〉〈6|

H
(3)
l = − t q̃z

2
(|2〉〈1| + |4〉〈3| + HC)+ U (|4〉〈4| + |2〉〈2|)

H
(0)
l = U |1〉〈1|. (6.5)

The present case can be obtained from the extended Hubbard model above, treated by
imposing all the self-consistent parameters different from the{qσ , q̃σ }σ=↑,↓ to be vanishing
and the chemical potential and the magnetic field as well. The spectrum and the eigenvectors
can therefore be immediately obtained from the results of section 3. Here we report only
the form of the self-consistency equations (we setzt/2 = 1):

q = 〈Q†
σQ

φ
σ 〉

〈Qφ†
σ Q

φ
σ 〉

= N
q

U(q, q̃)

D
q

U(q, q̃)
eiα q̃ = 〈Q̃†

σ Q̃
φ
σ 〉

〈Q̃φ†
σ Q̃

φ
σ 〉

= N
q̃

U(q, q̃)

D
q̃

U (q, q̃)
eiα̃ (6.6)
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where the following functions were defined:

N
q

U ≡ sinh(β|q|) N
q̃

U = e−β U
2 sinθ sinh

(
β

(
|q̃|2 + U2

4

)1/2)
D
q

U ≡ 2 + cosh(β|q|)+ e−β U
2

(
cos2

θ

2
exp

[
β

(
|q̃|2 + U2

4

)1/2
]

+sin2 θ

2
exp

[
−β

( |q̃|2 + U2

4

)1/2
])

D
q̃

U ≡ 2e−βU + 2 exp[−βU/2]

(
cos2

θ

2
exp[β(|q̃|2 + U2/4)1/2]

+ sin2 θ

2
exp[−β(|q̃|2 + U2/4)1/2]

)
(6.7)

and θ ≡ θ(3)σ = tan−1(2|q̃|/U). Following the same lines as in the case of the Heisenberg
model one finds that forU = 0 (θ = π/2) and half-filling, we have the solution|q| = |q̃|,
with the Ising-like autoconsistency condition|q| = 1

2 tanh(β|q|/2) from whence it follows
that βc = 4 and the zero temperature limit|q| → 1

2. For the non-vanishing Hubbard
parameterU (or filling n 6= 1) the symmetry between the{qσ } and the{q̃σ }, reflecting the
hole–particle symmetry inH̃ for Hl is explictly broken.

7. Conclusions

In this paper we have proposed an approximate treatment for a general system of interacting
spin-1

2 fermions over ad-dimensional lattice3. The point of view is that of strong
on-site coupling in which the Coulomb repulsion has to be treated exactly. The non-
local interactions are linearized with operator coefficients built as bilinears of an auxiliary
local fermionic algebra representing, in an averaged way, the lattice neighbourhood
of each site. The coupling constants between physical and auxilary fermions are the
variational parameters of the theory. The local Hilbert space has to be extended in
order to accommodate the auxiliary degrees of freedom, and the dynamics is confined
in finite-dimensional sectors of such space. The extended Hubbard model has been used
to exemplify our approach, since it contains all possible elementary number-conserving
fermionic interactions. The dynamical algebra of the linearized model has the form
A` = 4u(1) ⊕ 6u(2) ⊕ u(4), each of the terms being associated with different classes of
elementary processes. The spectrum can be determined in a simple algebraic way; moreover,
if we impose the conservation of the number of doubly occupied sites, theu(4) term splits
into twou(2) contributions associated with the spin and pseudo-spin interactions. Since this
method allows a description of systems in which the nearest-neighbour Hamiltonian includes
charge–charge, spin–spin and pair interactions, it extends, in a substantial way, the fermionic
linearization scheme in its Clifford variables form, where only the pure electron hopping was
considered. The self-consistency equations can be explicitly written down forT 6= 0. They
have a fixed point form for a map4 in an eight-dimensional manifoldM, parametrized by
chemical potential, Hubbard repulsion, magnetic field and temperature. Strong nonlinearity
and high dimensionality make the dynamical system defined by4 unstable and careful
numerical investigations are requested.

In conclusion we wish to emphasize the great generality of the method proposed. Our
scheme is characterized by two main features: on the one hand, the Hilbert space of states
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is doubled introducing auxiliary degrees of freedom in addition to the physical ones; on the
other hand, the operators representing such new degrees of freedom are assumed to belong to
an algebra isomorphic with that of the original dynamical variables. The latter construction,
which has been adopted here and in [13–15] in a representation-dependent form, can be
applied more generally to cases where the dynamics is given in terms of bilinears of the
generators of some abstract algebra, without resorting explicitly to a background algebra
of fermions or bosons. We therefore expect the method to be effective not only for local
Lie–Hopf algebras but for deformed Hopf algebra (q-algebra) as well. Of course in these
cases the linearized problem will typically lead to infinite-dimensional dynamical algebras
for which the diagonalization is non-trivial. However the diagonalization is expected to be
much simpler than in the original problem.
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Appendix A

A.1 States

We list hereafter the 16-dimensional basis ofH̃. P (nF)
i ≡ |i〉nF〈i|nF denotes the projector

associated with theith state ofH̃(nF).
nF = 0:

P
(0)
1 =

∏
σ

(1 − nσ )(1 − nφσ ). (A1)

nF = 1:

P
(1)
1 = n

φ

↑(1 − n
φ

↓)(1 − n↑)(1 − n↓)

P
(1)
2 = (1 − n

φ

↑)n
φ

↓(1 − n↑)(1 − n↓)

P
(1)
3 = (1 − n

φ

↑)(1 − n
φ

↓)n↓(1 − n↑)

P
(1)
4 = (1 − n

φ

↑)(1 − n
φ

↓)(1 − n↓)n↑. (A2)

nF = 2:

P
(2)
1 = n

φ

↑n
φ

↓(1 − n↑)(1 − n↓)

P
(2)
2 = n

φ

↑(1 − n
φ

↓)(1 − n↑)n↓

P
(2)
3 = n

φ

↑(1 − n
φ

↓)(1 − n↓)n↑

P
(2)
4 = (1 − n

φ

↑)n
φ

↓n↓(1 − n↑)

P
(2)
5 = (1 − n

φ

↑)n
φ

↓(1 − n↓)n↑

P
(2)
6 = (1 − n

φ

↑)(1 − n
φ

↓)n↓n↑. (A3)

nF = 3:

P
(3)
1 = n

φ

↑n
φ

↓(1 − n↑)n↓

P
(3)
2 = (1 − n

φ

↑)n
φ

↓n↑n↓
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P
(3)
3 = n

φ

↑n
φ

↓(1 − n↓)n↑

P
(3)
4 = n

φ

↑(1 − n
φ

↓)n↓n↑. (A4)

nF = 4:

P
(4)
1 =

∏
σ

nσn
φ
σ . (A5)

Of courseH̃(1) and H̃(3) are particle–hole conjugate (H̃(0) and H̃(4)) whereasH̃(2) is self-
conjugate.

A.2 Operators

We introduce the physical sector projectors

N
f

0 = (1 − n↑)(1 − n↓) = P
(0)
1 + P

(1)
1 + P

(1)
2 + P

(2)
1

N
f

↓ = (1 − n↑)n↓ = P
(1)
3 + P

(2)
2 + P

(2)
4 + P

(3)
1

N
f

↑ = n↑(1 − n↓) = P
(1)
4 + P

(2)
3 + P

(2)
5 + P

(3)
3

N
f

` = n↑n↓ = P
(2)
6 + P

(3)
2 + P

(3)
4 + P

(4)
1 (A6)

and the operatorsOα ∈ End(H̃), (α = 1, . . . ,12) acting in a non-trivial way on both the
factors of the tensor product

O1,2 = Q
†
↑,↓Q

φ

↑,↓ O3,4 = Q̃
†
↑,↓Q̃

φ

↑,↓
O5,6 = Q̃

†
↑,↓Q

φ

↑,↓ O7,8 = Q
†
↑,↓Q̃

φ

↑,↓
O9 = η†ηφ O10 = S†Sφ

O11 = ηzηzφ O12 = SzSzφ. (A7)

Projecting these operators̃H(nF) by means of the projectorsP (nF) = ∑dF
α P

(nF)
α (i.e.

O
(nF)
j = P (nF)OjP

(nF)), we get the non-vanishing components:

O
(1)
1 = |4〉〈1| O

(1)
2 = |3〉〈2|

O
(3)
3 = −|2〉〈1| O

(3)
4 = −|4〉〈3|

O
(2)
5 = −|6〉〈2| O

(2)
6 = |6〉〈5|

O
(2)
7 = |5〉〈1| O

(2)
8 = −|2〉〈1|

O
(2)
9 = |6〉〈1| O

(2)
10 = |5〉〈2|

O
(0)
11 = 1

4|1〉〈1| O
(1)
9 = 1

4|1〉〈1|
O
(2)
11 = − 1

4(|1〉〈1| + |6〉〈6|) O
(4)
11 = 1

4|1〉〈1|
O
(2)
12 = 1

4(|3〉〈3| + |4〉〈4| − |2〉〈2| − |5〉〈5|). (A8)

We list the projectors on the auxiliary sector

N
φ

↑ = P
(1)
1 + P

(2)
2 + P

(2)
3 + P

(3)
4

N
φ

↓ = P
(1)
2 + P

(2)
4 + P

(2)
5 + P

(3)
2

N
φ

` = P
(2)
1 + P

(3)
1 + P

(4)
1 + P

(3)
3 . (A9)

The diagonal operators

(ηz)2 = 1
4(P

(0)
1 + P

(1)
3 + P

(1)
4 + P

(2)
6 + P

(2)
1 + P

(4)
1 )

(Sz)2 = 1
4(P

(1)
1 + P

(1)
2 + P

(2)
2 + P

(2)
3 + P

(2)
4 + P

(2)
5 + P

(3)
3 + P

(3)
4 ) (A10)

are useful in the calculations.
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Appendix B

The components of4: R8 → R8 are given by

41 = 〈SzSzφ〉
〈(Szφ)2〉 42 = 〈S†Sφ〉

〈Nφ

↑ 〉

43 = 〈ηzηzφ〉
〈(ηzφ)2〉 44 = 〈η†ηφ〉

〈Nφ

` 〉

45,6 = 〈Q↑,↓Q
φ

↑,↓〉
〈Nφ

↓,↓〉
47,8 = 〈Q̃↑,↓Q̃

φ

↑,↓〉
〈Nφ

` 〉
(B1)

where the quantities in brackets have the following explicit expressions (〈•〉(i) denotes
tr{• e−βH(i)

` })
〈Nφ

σ 〉(1) = cos2
θ(1)σ

2
e−βE(1)+σ + sin2 θ

(1)
σ

2
e−βE(1)−σ

〈Nφ
σ 〉(2) = cos2

θS

2
e−βES+ + sin2 θ

S

2
e−βES− + e−βEDσ

〈Nφ
σ 〉(3) = cos2

θ
(3)
−σ
2

e−βE(3)−(−σ) + sin2 θ
(3)
−σ
2

e−βE(3)+(−σ) (B2)

〈Nφ

` 〉 = 〈Nφ

` 〉(2) + 〈Nφ

` 〉(3) + 〈Nφ

` 〉(4)

〈Nφ

` 〉(2) = cos2
θη

2
e−βEη+ + sin2 θ

η

2
e−βEη−

〈Nφ

` 〉(3) =
∑
σ

(
cos2

θ(3)σ

2
e−βE(3)+σ + sin2 θ

(3)
σ

2
e−βE(3)−σ

)
〈Nφ

` 〉(4) = e−βE4
(B3)

and (up to a phase factor)

〈S†Sφ〉(2) = sinθSe−βES0 sinh(βES1 )

〈η†ηφ〉(2) = sinθηe−βEη0 sinh(βEη1)

〈Q†
σQ

φ
σ 〉(1) = sinθ(1)σ e−βE(1)0σ sinh(βE(1)1σ )

〈Q̃†
σ Q̃

φ
σ 〉(3) = sinθ(3)σ e−βE(3)0σ sinh(βE(3)1σ ) (σ =↑,↓)

〈SzSzφ〉(2) = 1
4

( ∑
σ

e−βEDσ − e−βES+ − e−βES−
)
. (B4)

Finally

〈(ηzφ)2〉(i) = 〈ηzηzφ〉(0) = e−βE(i)

4
(i = 0, 4)

〈(ηzφ)2〉(2) = −〈ηzηzφ〉(2) = 1
4

∑
α=±

e−βEηα

〈(ηzφ)2〉(i) = 〈(Szφ)2〉(i) = 1
4

∑
σ

(
cos2

θ(i)

2
e−βE(i)+σ + sin2 θ

(i)

2
e−βE(i)−σ

)
(i = 1, 3)

〈(Szφ)2〉(2) = 1
4

∑
α=±

e−βESa + 1
4

∑
σ

e−βEDσ

〈(ηzφ)2〉(4) = 〈ηzηzφ〉(4) = 1
4e−βE(4) . (B5)
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